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INTRODUCTION

* Neural reactivation during sleep/rest resembles
preceding tasks (replay, memory consolidation)

e Replay of spike sequences may capture underlying

causal functional relationships between neurons
e Effective connectivity <~ Causal influence [1]

* Detection of replay and its causal structure are
important to understand neural computations
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EXISTING METHODS
Why existing methods fall short?
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assume f is linear, oversimplifying the interactions between neurons

OBJECTIVES

Develop a model that:

 Robustly handles sparse spiking
 Recovers diverse network topologies
 Makes no linearity assumptions

e Scales efficiently and accurately to large
networks under realistic firing rates (10-20 Hz)

METHODS

Data Generation

l. Fully Synthetic Spikes
* Known influence matrix W and bias terms 8

* Simulate trajectories of binary states s; €
{—1,+1}" for N neurons using W and 8

e —1:nospike, +1: spike
Il. NEURON (Biophysically realistic spikes)

* Single compartment multi-current pyramidal
cell network of CA3 place cells (binarized)
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Spikes — One-step states (S¢, S¢41)
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Phase 1: fit with off-
diagonal mask + L1
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Phase 1: refit using M )
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Probabilistic Model: CausalSpikeGraph (CSG)
* One-Step Transition Max Likelihood Estimation

* Transition probabilities from s; to s;.,1:
P(Str1n = +115)) = 0B + Wy - sp)

Goal: Recover W from
observations (S;41, S¢)

Example: Let ¢, =
€c = 2.5and f,, =-2
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Loss functions for optimization

Lphaser = — 2 lng(St+1| s, W, ﬁ) + A Z |Wn,m| )
(Se+1,5¢) m#n
Lphasez = — z logp(st+1| s W QOM, ﬁ)
(St+1,st)
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Causality in Replay: Detecting Effective Connectivity from Spike Trains
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NEURON Data
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Multiple Targets, One Source
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NEURON Data
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Realistic (NEURON) & Multiple Motifs

* Area Under Precision-Recall (AUPR) of
recovered connections vs binning window

 45-neuron networks with motifs; firing-rate
regimes from ~10-17 Hz

Edge-Recovery for Different Firing Rates

Ground Truth
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CONCLUSIONS

Introduced a causal structure method CSG

* Faithful discovery of all general topologies
* Reliable performance on NEURON data
 Does not assume linearity in data

 Does not depend on data lag, like Granger Causality,
Cross-Correlation

* No pairwise comparisons

 No acyclicity, or other strong, assumptions like in
Structural Equation Model DirectLiNGAM

Next Steps
« Remove CSG’s reliance on a binning window

e Evaluate CSG’s performance on more realistic datasets
and against new reactivation detection methods [2]
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