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• Neural reactivation during sleep/rest resembles 
preceding tasks (replay, memory consolidation)

• Replay of spike sequences may capture underlying 
causal functional relationships between neurons

• Effective connectivity  Causal influence [1]

• Detection of replay and its causal structure are 
important to understand neural computations
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Introduced a causal structure method CSG

• Faithful discovery of all general topologies 

• Reliable performance on NEURON data 

• Does not assume linearity in data

• Does not depend on data lag, like Granger Causality, 
Cross-Correlation

• No pairwise comparisons

• No acyclicity, or other strong, assumptions like in 
Structural Equation Model DirectLiNGAM

Next Steps

• Remove CSG’s reliance on a binning window

• Evaluate CSG’s performance on more realistic datasets 
and against new reactivation detection methods [2]
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Causality in Replay: Detecting Effective Connectivity from Spike Trains

?

OBJECTIVES

Develop a model that:

• Robustly handles sparse spiking

• Recovers diverse network topologies

• Makes no linearity assumptions

• Scales efficiently and accurately to large 
networks under realistic firing rates (10-20 Hz)

Why existing methods fall short?

VS.

fail for high signal-
to-noise ratio

fail to capture 
recurrent relationshipscatch synchrony 

but not direction

or

𝑓 =

assume 𝒇 is linear, oversimplifying the interactions between neurons

Data Generation

I. Fully Synthetic Spikes

• Known influence matrix 𝑾 and bias terms 𝜷

• Simulate trajectories of binary states 𝑠𝑡 ∈
−1, +1 𝑁 for 𝑁 neurons using 𝑾 and 𝜷

• −1: no spike, +1: spike 

II. NEURON (Biophysically realistic spikes)

• Single compartment multi-current pyramidal 
cell network of CA3 place cells (binarized)
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Loss functions for optimization 
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Spikes → One-step states (𝑠𝑡 , 𝑠𝑡+1) 

CausalSpikeGraph
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Probabilistic Model: CausalSpikeGraph (CSG)

• One-Step Transition Max Likelihood Estimation

• Transition probabilities from 𝒔𝒕 to 𝒔𝒕+𝟏:

𝑝 𝑠𝑡+1,𝑛 = +1 | 𝒔𝒕 = 𝜎 𝛽𝑛 + 𝑾𝒏 ⋅ 𝒔𝒕

Goal: Recover 𝑾 from 
observations 𝒔𝒕+𝟏, 𝒔𝒕

Example: Let 𝜖1 =
𝜖5 = 2.5 and 𝛽𝑛 = -2

• Area Under Precision-Recall (AUPR) of 
recovered connections vs binning window

• 45-neuron networks with motifs; firing-rate 
regimes from ~10–17 Hz
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